
Traverse the Path
Attacks on extraction implementation



Who am I

Jan Harrie

Security Engineer @HashiCorp by day 🌞 
and soon-to-be-dad by night 🌝
Hobbies:

- Cooking
- Outdoor activities
- Dog
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Motivation

I started working on a secure extraction library in Golang to secure our supply 
chain by offering a best practices implementation for such a well studied problem 
class.

To get product teams motivated to adopt the library, I started reviewing our code 
base and the results were … unexpected
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Motivation

Funny enough, Joern Schneeweisz posted after my submission the following on 
LinkedIn:

Which nails the topic of this talk ;)
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Recap: Well known archive attacks

- Exhaustion attacks, e.g., 42.zip
- Path traversal attacks, e.g., archive entries with leading ../ 
- Symlinks to sensitive files, e.g., links to passwd ⇒ /etc/passwd that are read 

after extraction
- Zip-Slip attacks, with smart packed archives, example will follow

Sounds not too tough huh?
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https://unforgettable.dk/


Exhaustion Attack Prevention

Implement limits for:

- Input size
- Output size
- Maximum files #
- Extraction-Recursion

Establish extraction timeouts



Path Traversal Attack Prevention

Ensure that the joined path starts with the destination 
AND a path separator!

Archive structure

Combined with path /tmp/dst

That's really a thing? What?
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Bug: (Limited) Path Traversal Attacks

Adjusted code example from hashicorp/go-slug 

8

Let’s start looking for bugs

https://github.com/hashicorp/go-slug/


Bug: (Limited) Path Traversal Attacks
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Remove the prefix

Adjusted code example from hashicorp/go-slug 

https://github.com/hashicorp/go-slug/


Bug: (Limited) Path Traversal Attacks
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Combine the path’s

Adjusted code example from hashicorp/go-slug 

https://github.com/hashicorp/go-slug/


Bug: (Limited) Path Traversal Attacks
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Check the prefix

Adjusted code example from hashicorp/go-slug 

https://github.com/hashicorp/go-slug/


Bug: (Limited) Path Traversal Attacks

Can you spot the bug?
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Adjusted code example from hashicorp/go-slug 

https://github.com/hashicorp/go-slug/


Bug: (Limited) Path Traversal Attacks

Missing separator at the end of dst

Nothing big, but still not as 
intended
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Adjusted code example from hashicorp/go-slug 

https://github.com/hashicorp/go-slug/


Attack Detection: Zip-Slip Attack

Don’t traverse symlinks during extraction and check every element!

Archive entries

14



Attack Detection: Zip-Slip Attack

Don’t traverse symlinks during extraction and check every element!

Archive entries Extracted files

Sounds not too tough huh?
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Existing implementation

Split the path
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Existing implementation

Iterate over the 
elements
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Existing implementation

Get the type of 
each element
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Existing implementation

If an element in 
the path is a 

symlink ⇒ fail!
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Bug: Zip-Slip Attack Can YOU spot the bug?
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Bug: Zip-Slip Attack

Code optimization 
invented a security issue

21Bug got assigned CVE-2025-0377 and addressed in hashicorp/go-slug#76 

https://nvd.nist.gov/vuln/detail/CVE-2025-0377
https://github.com/hashicorp/go-slug/pull/76


Invariant Zip-Slip Attack: Link Write Attack

Did you know that one archive can contain multiple entries with the same name? It 
depend on the implementation how such edge-cases are handled. 

Archive entries
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Invariant Zip-Slip Attack: Link Write Attack

Did you know that one archive can contain multiple entries with the same name? It 
depend on the implementation how such edge-cases are handled. 

Archive entries The tar binary extracts every 
entry and overwrites existing one
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Invariant Zip-Slip Attack: Link Write Attack

Did you know that one archive can contain multiple entries with the same name? It 
depend on the implementation how such edge-cases are handled. 

Archive entries The tar binary extracts every 
entry and overwrites existing one
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Invariant Zip-Slip Attack: Link Write Attack

Did you know that one archive can contain multiple entries with the same name? It 
depend on the implementation how such edge-cases are handled. 

Archive entries The tar binary extracts every 
entry and overwrites existing one

But what is the default behavior in programming languages?
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Excursion: Godocs

But what about symlinks to files that do not exist?
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Excursion: Golang

Turns out: The `Open` syscall is used in golang under the hood [ref]
which traverses symlinks. 

Let’s use that and have some fun

(I observed the same behaviour in Python. Further details can be found here) 27

https://cs.opensource.google/go/go/+/refs/tags/go1.23.4:src/os/file_open_unix.go;l=15
https://blog.nody.cc/posts/link-write-attack/


Bug: Link-Write Attack Example

This Nomad source code looked perfect to be exploited
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https://github.com/hashicorp/nomad/blob/ef6cdec8847e0698d386d1fd3761743df758ef99/client/allocwatcher/alloc_watcher.go#L608-L636


Bug: Link-Write Attack Example

But the security check was stopping me in the first place.
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Bug: Link-Write Attack Example

You can guess – based on the function body – which error I encountered to 
bypass the security check ;)
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Bug: Link-Write Attack Example

You can guess – based on the function body – which error I encountered to 
bypass the security check ;)
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🫠

filepath.EvalSymlink(path) 
returns os.ErrNotExist if path does 

not exist. 



Bug: Link-Write Attack Example

The security check could by bypassed as long as the symlink in the archive points 
to a target the does not exist before extraction.
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Bug: Link-Write Attack Example

The security check could by bypassed as long as the symlink in the archive points 
to a target the does not exist before extraction.

The bug got CVE-2024-7625 assigned and was remediated by aligning to the 
behaviour of the tar binary and deleting existing files before extraction.

Further details can be found in HSEC-2024-17. 33

https://nvd.nist.gov/vuln/detail/CVE-2024-7625
https://discuss.hashicorp.com/t/hcsec-2024-17-nomad-vulnerable-to-allocation-directory-escape-on-non-existing-file-paths-through-archive-unpacking/69293


Another day, another bug

Google released at the beginning of the year the blogpost The Family of Safe 
Golang Libraries is Growing!. 

Due to the fact that I was also working on a library – the google/safearchive library 
grabbed my attention and I was curious how they handle Symlinks in archives.
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https://bughunters.google.com/blog/4925068200771584/the-family-of-safe-golang-libraries-is-growing
https://bughunters.google.com/blog/4925068200771584/the-family-of-safe-golang-libraries-is-growing
https://github.com/google/safearchive


google/safearchive source code

Since we are security experts, we 
can verify that the implementation is 
secure, right? ;) 

35



google/safearchive source code

Since we are security experts, we 
can verify that the implementation is 
secure, right? ;) 

Sanitize path
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google/safearchive source code

Since we are security experts, we 
can verify that the implementation is 
secure, right? ;) 

Remove absolut path
prefix
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google/safearchive source code

Since we are security experts, we 
can verify that the implementation is 
secure, right? ;) 

check for symlinks from 
previous archive entries
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google/safearchive source code

Since we are security experts, we 
can verify that the implementation is 
secure, right? ;) 

If an entry is a symlink, 
keep book of it.
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google/safearchive source code

Feels secure right?
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google/safearchive source code

It depends on the underlying 
filesystem ;)
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google/safearchive source code

NTFS (Windows) & APFS (Mac) are case insensitive filesystems by default

Exploit the 
bug
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google/safearchive source code

NTFS (Windows) & APFS (Mac) are case insensitive filesystems by default

The bug got CVE-2024-10389 assigned and remediated in the next patch cycle.

Exploit the 
bug
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https://github.com/CVEProject/cvelist/blob/c7dd6e6adfc31f24000bbac0b9e68f95847187a3/2024/10xxx/CVE-2024-10389.json


Related bugs and open research

Short file names on Windows (DOWNLO~1 == Downloads) [ref]

WorstFit: Unveiling Hidden Transformers in Windows ANSI! w/Orange Tsai

Windows filepath handling is a complete own rabbit hole 🐰

https://github.com/google/safearchive/commit/f7ce9d7b6f9c6ecd72d0b0f16216b046e55e44dc
https://www.blackhat.com/eu-24/briefings/schedule/index.html#worstfit-unveiling-hidden-transformers-in-windows-ansi-42637


Summary & Recommendation

Investigating a problem area while implementing a safe library is great way to 
learn!

Big names does not mean no problems – no shit :)

Low-level system interactions need to be implemented with care.

Stick with best practices implementation, e.g., google/safearchive or 
hashicorp/go-extract

https://github.com/google/safearchive
https://github.com/hashicorp/go-extract


Questions?
Thank you for your attention! 

slides: s.gurke.io/dc18 
contact: jan@nody.cc 

https://s.gurke.io/daycon18
mailto:jan@nody.cc

