
Traverse the Path
Attacks on extraction implementation



Who am I

Jan Harrie

Security Engineer @HashiCorp by day 🌞 
and soon-to-be-dad by night 🌝
Hobbies:

- Cooking
- Outdoor activities
- Dog

2



Motivation

I started working on a secure extraction library in Golang to secure our supply 
chain by offering a best practices implementation for such a well studied problem 
class.

To get product teams motivated to adopt the library, I started reviewing our code 
base and the results were … unexpected

3



Motivation

Funny enough, Joern Schneeweisz posted after my submission the following on 
LinkedIn:

Which nails the topic of this talk ;)

4



Recap: Well known archive attacks

- Exhaustion attacks, e.g., 42.zip
- Path traversal attacks, e.g., archive entries with leading ../ 
- Symlinks to sensitive files, e.g., links to passwd ⇒ /etc/passwd that are read 

after extraction
- Zip-Slip attacks, with smart packed archives, example will follow

Sounds not too tough huh?

5

https://unforgettable.dk/


Exhaustion Attack Prevention

Implement limits for:

- Input size
- Output size
- Maximum files #
- Extraction-Recursion

Establish extraction timeouts



Path Traversal Attack Prevention

Ensure that the joined path starts with the destination 
AND a path separator!

Archive structure

Combined with path /tmp/dst

That's really a thing? What?

7



Bug: (Limited) Path Traversal Attacks

Adjusted code example from hashicorp/go-slug 

8

Let’s start looking for bugs

https://github.com/hashicorp/go-slug/


Bug: (Limited) Path Traversal Attacks

9

Remove the prefix

Adjusted code example from hashicorp/go-slug 

https://github.com/hashicorp/go-slug/


Bug: (Limited) Path Traversal Attacks

10

Combine the path’s

Adjusted code example from hashicorp/go-slug 

https://github.com/hashicorp/go-slug/


Bug: (Limited) Path Traversal Attacks

11

Check the prefix

Adjusted code example from hashicorp/go-slug 

https://github.com/hashicorp/go-slug/


Bug: (Limited) Path Traversal Attacks

Can you spot the bug?

12

Adjusted code example from hashicorp/go-slug 

https://github.com/hashicorp/go-slug/


Bug: (Limited) Path Traversal Attacks

Missing separator at the end of dst

Nothing big, but still not as 
intended

13

Adjusted code example from hashicorp/go-slug 

https://github.com/hashicorp/go-slug/


Attack Detection: Zip-Slip Attack

Don’t traverse symlinks during extraction and check every element!

Archive entries

14



Attack Detection: Zip-Slip Attack

Don’t traverse symlinks during extraction and check every element!

Archive entries Extracted files

Sounds not too tough huh?

15



Existing implementation

Split the path

16



Existing implementation

Iterate over the 
elements

17



Existing implementation

Get the type of 
each element

18



Existing implementation

If an element in 
the path is a 

symlink ⇒ fail!

19



Bug: Zip-Slip Attack Can YOU spot the bug?

20



Bug: Zip-Slip Attack

Code optimization 
invented a security issue

21Bug got assigned CVE-2025-0377 and addressed in hashicorp/go-slug#76 

https://nvd.nist.gov/vuln/detail/CVE-2025-0377
https://github.com/hashicorp/go-slug/pull/76


Invariant Zip-Slip Attack: Link Write Attack

Did you know that one archive can contain multiple entries with the same name? It 
depend on the implementation how such edge-cases are handled. 

Archive entries

22



Invariant Zip-Slip Attack: Link Write Attack

Did you know that one archive can contain multiple entries with the same name? It 
depend on the implementation how such edge-cases are handled. 

Archive entries The tar binary extracts every 
entry and overwrites existing one

23



Invariant Zip-Slip Attack: Link Write Attack

Did you know that one archive can contain multiple entries with the same name? It 
depend on the implementation how such edge-cases are handled. 

Archive entries The tar binary extracts every 
entry and overwrites existing one

24



Invariant Zip-Slip Attack: Link Write Attack

Did you know that one archive can contain multiple entries with the same name? It 
depend on the implementation how such edge-cases are handled. 

Archive entries The tar binary extracts every 
entry and overwrites existing one

But what is the default behavior in programming languages?
25



Excursion: Godocs

But what about symlinks to files that do not exist?

26



Excursion: Golang

Turns out: The `Open` syscall is used in golang under the hood [ref]
which traverses symlinks. 

Let’s use that and have some fun

(I observed the same behaviour in Python. Further details can be found here) 27

https://cs.opensource.google/go/go/+/refs/tags/go1.23.4:src/os/file_open_unix.go;l=15
https://blog.nody.cc/posts/link-write-attack/


Bug: Link-Write Attack Example

This Nomad source code looked perfect to be exploited

28

https://github.com/hashicorp/nomad/blob/ef6cdec8847e0698d386d1fd3761743df758ef99/client/allocwatcher/alloc_watcher.go#L608-L636


Bug: Link-Write Attack Example

But the security check was stopping me in the first place.

29



Bug: Link-Write Attack Example

You can guess – based on the function body – which error I encountered to 
bypass the security check ;)

30



Bug: Link-Write Attack Example

You can guess – based on the function body – which error I encountered to 
bypass the security check ;)

31

🫠

filepath.EvalSymlink(path) 
returns os.ErrNotExist if path does 

not exist. 



Bug: Link-Write Attack Example

The security check could by bypassed as long as the symlink in the archive points 
to a target the does not exist before extraction.

32



Bug: Link-Write Attack Example

The security check could by bypassed as long as the symlink in the archive points 
to a target the does not exist before extraction.

The bug got CVE-2024-7625 assigned and was remediated by aligning to the 
behaviour of the tar binary and deleting existing files before extraction.

Further details can be found in HSEC-2024-17. 33

https://nvd.nist.gov/vuln/detail/CVE-2024-7625
https://discuss.hashicorp.com/t/hcsec-2024-17-nomad-vulnerable-to-allocation-directory-escape-on-non-existing-file-paths-through-archive-unpacking/69293


Another day, another bug

Google released at the beginning of the year the blogpost The Family of Safe 
Golang Libraries is Growing!. 

Due to the fact that I was also working on a library – the google/safearchive library 
grabbed my attention and I was curious how they handle Symlinks in archives.

34

https://bughunters.google.com/blog/4925068200771584/the-family-of-safe-golang-libraries-is-growing
https://bughunters.google.com/blog/4925068200771584/the-family-of-safe-golang-libraries-is-growing
https://github.com/google/safearchive


google/safearchive source code

Since we are security experts, we 
can verify that the implementation is 
secure, right? ;) 

35



google/safearchive source code

Since we are security experts, we 
can verify that the implementation is 
secure, right? ;) 

Sanitize path

36



google/safearchive source code

Since we are security experts, we 
can verify that the implementation is 
secure, right? ;) 

Remove absolut path
prefix

37



google/safearchive source code

Since we are security experts, we 
can verify that the implementation is 
secure, right? ;) 

check for symlinks from 
previous archive entries

38



google/safearchive source code

Since we are security experts, we 
can verify that the implementation is 
secure, right? ;) 

If an entry is a symlink, 
keep book of it.

39



google/safearchive source code

Feels secure right?

40



google/safearchive source code

It depends on the underlying 
filesystem ;)

41



google/safearchive source code

NTFS (Windows) & APFS (Mac) are case insensitive filesystems by default

Exploit the 
bug

42



google/safearchive source code

NTFS (Windows) & APFS (Mac) are case insensitive filesystems by default

The bug got CVE-2024-10389 assigned and remediated in the next patch cycle.

Exploit the 
bug

43

https://github.com/CVEProject/cvelist/blob/c7dd6e6adfc31f24000bbac0b9e68f95847187a3/2024/10xxx/CVE-2024-10389.json


Related bugs and open research

Short file names on Windows (DOWNLO~1 == Downloads) [ref]

WorstFit: Unveiling Hidden Transformers in Windows ANSI! w/Orange Tsai

Windows filepath handling is a complete own rabbit hole 🐰

https://github.com/google/safearchive/commit/f7ce9d7b6f9c6ecd72d0b0f16216b046e55e44dc
https://www.blackhat.com/eu-24/briefings/schedule/index.html#worstfit-unveiling-hidden-transformers-in-windows-ansi-42637


Summary & Recommendation

Investigating a problem area while implementing a safe library is great way to 
learn!

Big names does not mean no problems – no shit :)

Low-level system interactions need to be implemented with care.

Stick with best practices implementation, e.g., google/safearchive or 
hashicorp/go-extract

https://github.com/google/safearchive
https://github.com/hashicorp/go-extract


Questions?
Thank you for your attention! 

slides: s.gurke.io/dc18 
contact: jan@nody.cc 

https://s.gurke.io/daycon18
mailto:jan@nody.cc

